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SUMMARY 
A finite element algorithm is presented for simultaneous calculation of the steady state, axisymmetric flows 
and the crystal, melt/crystal and melt/ambient interface shapes in the Czochralski technique for crystal 
growth from the melt. The analysis is based on mixed Lagrangian finite element approximations to the 
velocity, temperature and pressure fields and isoparametric approximations to  the interface shape. Galerkin's 
method is used to  reduce the problem to a non-linear algebraic set, which is solved by Newton's method. 
Sample solutions are reported for the thermophysical properties appropriate for silicon, a low-Prandtl- 
number semiconductor, and for GGG, a high-Prandtl-number oxide material. The algorithm is capable of 
computing solutions for both materials a t  realistic values of the Grashof number, and the calculations are 
convergent with mesh refinement. Flow transitions and interface shapes are calculated as a function of 
increasing flow intensity and compared for the two material systems. The flow pattern near the melt/gas/crys- 
tal tri-junction has the asymptotic form predicted by an inertialess analysis assuming the meniscus and 
solidification interfaces are fixed. 

KEY WORDS Czochralski crystal growth Finite element method Free boundary problem, 
Incompressible fluid flow Heat transfer 

1.  INTRODUCTION 

The Czochralski (CZ) crystal growth technique is the most widely used method for producing 
large single crystals of silicon and many other semiconductor materials for use as substrates in the 
fabrication of electronic devices.'-3 Many refractory oxide crystals which are used in the 
production of solid state lasers and optical devices are also produced by the CZ m e t h ~ d . ~  A 
variant of the CZ process known as liquid-encapsulated Czochralski growth (LEC) is used for the 
growth of galiium arsenide (GaAs) and other compound  semiconductor^.^ Here a layer of inert 
encapsulant, usually boric oxide (B203) ,  is floated on the surface of the melt in order to prevent the 
loss of volatile components, like As in GaAs, from the melt. 

In the CZ method a cylindrical single crystal is pulled vertically from the surface of a heated 
pool of melt contained in a cylindrical crucible, as shown schematically in Figure 1. Resistance 
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Figure 1 .  Schematic of the Czochralski crystal growth configuration showing domains for mathematical model and free 
surfaces 

heating is typically used for semiconductor systems, and inductive heating is common for the 
higher-melting-point oxide materials. Growth is initiated by lowering a small seed crystal to the 
surface of the melt pool so that it connects to the melt pool along a melt/crystal interface which is 
joined at the edges by the melt/ambient meniscus. After thermal equilibration of the seed with the 
melt, the seed is raised and the temperature of the melt is lowered to induce growth of the crystal. 
By control of the thermal environment and other parameters, the crystal radius is increased to a 
desired value and then kept constant as the melt level drops. 

The objective of the design and control ofa CZ crystal growth system is the growth of a constant 
radius crystal with uniformly distributed solutes and impurities and a low number of defects in its 
crystallographic structure. The interactions of heat transfer, interfacial phenomena, hydrodyn- 
amics in the melt, and dopant transport that occur in Czochralski crystal growth all influence these 
objectives. These couplings are characteristic of the complexity of meniscus-defined solidification 
processes in which a single crystal is grown from the exposed surface of its melt. Because the high 
temperatures of typical CZ systems prevent the use of many types of sensors during crystal growth, 
large-scale numerical simulations of the transport processes in CZ and other crystal growth 
systems provide the only means for probing these complex couplings. 
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Numerical analysis of a self-consistent model for Czochralski growth requires solution of the 
complex free-boundary problem that defines the shape of the crystal, the melt/crystal interface, the 
meniscus and the field variables, i.e. the temperature in all phases and the velocity and pressure 
fields in the melt. We have referred to models that include the coupling of the interfaces to heat 
transfer as thermal-capillary models (or TCMs) of CZ growth.' The purpose of this paper is to 
present a finite element algorithm for solution of thermal-capillary models that include a detailed 
description of convection in the melt, a so-called Hydrodynamic TCM or HTCM. 

Previous models for the CZ method have concentrated on analysis of either heat transfer and 
melt convection in idealized systems6-'' or on heat transfer alone in conjunction with determi- 
nation of the interfaces in the system;"-14 see Reference 15 for a comprehensive review of this 
latter type of analysis. The discussion here focuses on studies in the first category, which were 
referred to as analysis of Czochralski 'bulk flow' by Langlok6 

The idealized geometry used in bulk flow analyses of hydrodynamics in Czochralski growth 
takes the melt/crystal and melt/ambient interfaces to be flat so that the melt is simply a cylinder 
with varying thermal and velocity boundary conditions about its edges. The radius of the crystal is 
set, and the temperature of the melt/crystal interface is specified at the melting point. Heat 
transport in the crystal is not computed, so the crystal radius appears as a parameter in the 
analysis. Heat input into the melt is usually characterized by a constant temperature for the 
crucible wall, so that the intensity of convection in the melt can be scaled with a Grashof number, 
Gr* =g&,,R~,,,,A T,,,/vi, defined in terms of the radius of the crucible, R,,,,, and the temperature 
difference between the crucible wall and the melting point, AT,,,. The majority of the calculations 
reported for this system have been for thermophysical properties characteristic of semiconductor 
materials, where the large thermal conductivity and small kinematic viscosity lead to a low 
Prandtl number (- 0.01) in the melt. Oxide melts typically have Prandtl numbers in the range 1-10 
or greater. 

Kobayashi7 first computed steady state, axisymmetric flow fields for low values of Gr* and 
showed the effects of buoyancy-driven convection and crucible and crystal rotation on the viscous 
flow structure. Langlois6, MihelEic et aL8 and Crochet et aL9 have reported time-dependent 
calculations of axisymmetric flows. The results of Crochet et al. show clearly the development of 
time-periodic motion in low-Prandtl-number melts as Gr * is increased. The oscillations begin as 
a Hopf bifurcation from the steady state motion after separation of the flow from the vertical wall 
of the crucible. The separated flow becomes unstable as the intensity is increased by a mechanism 
involving the dynamic interaction of the multiple flow cells created by the separation. For the 
idealized geometry, a specific melt volume and a Prandtl number in the melt Pr=0*015, the onset 
of the oscillations occurred at Gr* = O(106). These oscillatory motions are unwanted because they 
lead to periodic melting and resolidification of the crystal and to fluctuations in the composition of 
the crystal.' 

Although the results of the analyses of CZ bulk flow have elucidated many of the features of the 
convection in the melt, the results cannot be applied directly to experimental systems since the 
analyses ignored the interactions between heat transfer and convection in the melt with the size 
and shape of melt and the crystal. The analysis described here includes the free boundaries for the 
CZ system; the crystal shape, the melt/crystal interface and the meniscus. 

We build on the finite element analysis described by Derby et a1." for solution of 
thermal-capillary models of CZ growth, which included the interactions of the free boundaries 
with conductive heat transfer in all phases but neglected convection in the melt. The analysis is 
based on deforming, isoparametric Lagrangian finite elements for representing field variables in 
all phases and the interface shapes separating the phases. The non-linear coupling of the finite 
element basis functions to the location of the element nodes intertwines the calculation of the field 
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variables and the interface shapes. A mixed Lagrangian basis set that is convergent for the 
Boussinesq equations is used, and the partial differential equations are discretized using 
Galerkin’s method. 

Independent sets of residual equations are distinguished to represent the shape of each interface. 
The normal stress balance is used for locating the meniscus. This is an extension of the method in 
Reference 12 to include the effects of normal viscous forces and dynamic pressure and is similar to 
the method first implemented by Silliman and ScrivenI6 (also see Kistler and ScrivenI7) to solve 
viscous free surface flows. This formulation reduces to the Young-Laplace equation for a static 
meniscus shape and to the formulation of Derby et a1.” when hydrodynamic interactions are 
unimportant. Distinguishing the normal stress balance for determining the shape of the melt/gas 
meniscus runs in parallel to the analysis of Bemelmans18 for formal proof of existence of viscous 
flow problems with a capillary surface. 

The isotherm condition is used as the distinguished condition for the melt/crystal interface. 
Ettouney and Brown” show that this choice leads to interface shapes computed to the same order 
of accuracy as the temperature field, This formulation has been incorporated into solidification 
problems including convection in the melt,zO~z’ In the quasi-steady state formulation considered 
here, the crystal must be a cylinder with radius determined so that a wetting angle condition at the 
melt/crystal/gas tri-junction is satisfied. Following the formulation for the conduction-dominated 
model,12 we use this condition to determine the radius of the crystal. 

The coupled set of residual equations is soived by Newton’s method, with the Jacobian matrix 
formed by explicit differentiation of each residual equation with respect to both field variables 
and interface shapes. As Ruschak22 and others’z~z0*23~24 h ave demonstrated, the added 
complexity of formulating the Jacobian matrix and the direct solution of the linear equation set is 
more than offset by the rapid convergence and robustness of the Newton iterations for the coupled 
set. These features are essential for the CZ problem, where any successive iteration technique must 
account for three free boundaries. 

The presence of the meit/crystal/gas tri-junction introduces the possiblity of a singularity in the 
flow field at this point; this singularity has been termed a static contact point.25 Local asymptotic 
analysis has been used to study the form of the flow in the neighbourhood ofdiscontinuities in the 
boundary data. In the limit where the meniscus has a set shape and inertia is unimportant, the 
separation of variables solution used by Dean and Montagnon26 and by M ~ f f a t t ~ ~  describes 
the form of the flow near the singularity. The results of this approach are reproduced in Section 2.4 
to predict the degree of the singularity in the flow field at the tri-junction as a function of 
separation angle between the melt/crystal interface and the melt/gas meniscus. For the range of 
separation angles encountered in this meniscus-defined crystal growth system, the combination of 
no-slip and shear-free boundary conditions at the melt/crystal interface and meit/gas meniscus 
results in a singularity that is not too severe; the stress remains integrable. 

The validity of the asymptotic analysis of MoffattZ7 for a meniscus shape that interacts with the 
flow field is an open question. Silliman and ScrivenI6 suggested that the fluid must be allowed to 
slip along the solid boundary-in this case the melt/crystal interface-to obtain an integrable 
stress and tested this idea on calculations of extrudate swell. The regular perturbation analysis of 
Trogdon and Josephz8 for small capillary number, a measure of the importance of normal viscous 
forces relative to surface tension, suggests that the separable solution has some range of validity in 
this limit. We pursue this approach here. 

The calculations described here are based on a simple model of radiative heat transport in 
which all surfaces in the CZ system view black bodies of fixed temperature but do not view each 
other. Atherton et a l l 4  (see also Reference 13) have extended the TCM to include diffuse-grey 
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radiative exchange between interacting surfaces, such as the melt, crystal and crucible. This 
analysis extends to the HTCM, as described in Reference 29. 

We present solutions for CZ growth of both semiconductor silicon and the oxide gadolinium 
gallium garnet (Gd,Ga,O,,), hereafter referred to as GGG, to contrast the development of the 
flow structure for low- and high-Prandtl-number melts. The calculations in Sections 4 and 5 are 
confined to analysis of buoyancy-driven flows and to the accuracy of the finite element 
calculations for two systems. A more extensive analysis including the flows driven by rotation of 
the crucible and crystal, thermocapillary driven flows and effects of an external magnetic field will 
be presented elsewhere. 

2. FORMULATION 

2.1. Field equations 

The physical configuration of the mathematical model for CZ growth is shown schematically in 
Figure 1. The multiple domains represent different physical regions of the system: crystal (s), melt 
(m), crucible (c) and crucible liner (I), each of which is characterized by different thermophysical 
properties. The cylindrical co-ordinate system (r ,  z ,  0) is centred at the bottom of the crucible, and 
the unknown boundary shapes are represented by the functions H,(r)  and H , ( r )  for the 
melt/crystal interface and the melt meniscus respectively and by R(z)  for the shape of the crystal. In 
this quasi-steady state analysis R(z)  has a constant value, so that a cylindrical crystal shape is 
assumed; however, its value is not set a priori but is calculated as part of the solution. This aspect is 
addressed in more detail below. 

The quasi-steady state (QSS) approximation is used to derived the HTCM. In it the effects of the 
batchwise decrease of the melt volume and the evolving crystal radius are neglected. The operation 
of the system throughout the batch is simulated by a sequence of steady state calculations at  
different values of the melt volume. Derby and Brown3' assessed the validity of the QSS 
approximation and found it to be accurate for long crystals in systems with good radius control. 

accounts for 
conductive heat transfer in each domain, with an additional convective term in the crystal to 
account for its upward velocity as it is slowly pulled from the melt. We retain this model for heat 
transport in the crystal, crucible and liner. The energy equations for these phases are written in 
dimensionless form as 

The thermal-capillary model (TCM) originally put forth by Derby et al. 

(1) 

O = V . ( K , V T ) ,  (2) 

O = V . ( K , V T ) ,  (3) 

aT 
Pe,  - = V-(K ,V  T ) ,  aZ 

where Pe,  is the Peclet number for heat transfer in the crystal and K i ,  i = s, c, 1, are reduced thermal 
conductivities of each phase (scaled with the reference value of the conductivity of the crystal at the 
melting temperature) which are allowed to be functions of temperature. The temperature has been 
scaled with the absolute melting point temperature Tmp, and the lengths with L =  R,,,,, the inner 
radius of the cruciblefliner assembly. A complete listing of dimensionless groups is given in 
Table I. 

The extension of the TCM to include fluid flow requires the modification of the energy equation 
in the melt and introduces additional field equations for the velocity and pressure in the melt. The 
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Table I. Dimensionless groups appearing in the HTCM 

Symbol Definition Name/description 

B O  

Bi, 
CU 
Gr 

Gr * 

MU 

S 
We 

Bond no.; y is the gravitational constant 
Biot no. for heat transfer at surface j 
Capillary no. 
Grashof no. in melt, based on absolute melting point 
temperature 
Grashof no. in melt, based on temperature difference 
in melt 
Marangoni no. based on absolute melting point 
temperature 
Peclet no. for heat transfer in crystal 
Peclet no. for heat transfer in melt, based on maximum 
velocity in melt 
Prandtl no. 
Radiation no. for heat transfer from surface j ;  o ( ~ ~ ,  is 
the Stefan-Boltzmann constant 
Rotational Reynold‘s no. for crucible 
Rotational Reynold’s no. for crystal based on crucible 
radius 
Rotational Reynold‘s no. for crystal based on crystal 
radius 
Reynolds no. in melt, based on maximum velocity in 
melt 
Stefan no. 

P m  a t5’YL Weber no. 

WsR2/Vm 

v* Llv,  

AHf I C p m  Tm p 

momentum and continuity equations are written in dimensionless form using the Boussinesq 
approximation: 

v - V v = V * o + G r P r 2 ( T -  l)ez, (4) 
K,v.V T= V.(K,V T ) ,  

v * v = o ,  

where Gr is the Grashof number, P r  is the Prandtl number and K, = k,/k, is the ratio of the 
thermal couductivity of the melt to the thermal conductivity of the crystal. The velocity has been 
made dimensionless using the thermal scaling am/L, where a, is the thermal diffusivity of the melt. 
See Table I for the definitions of Gr and Pr. 

The dimensionless stress tensor o is given in terms of P,  the deviation of the pressure from the 
hydrostatic value, and the deviatoric stress z as 

Is= -PI+z, (7) 

z = P r ( V v + V v T ) .  

where the deviatoric stress for a Newtonian fluid is 

Both P and z have been scaled with the viscous reference pma,/L2, where p, is the viscosity of the 
melt. Writing the momentum equation in terms of the stress tensor facilitates the application of 
boundary conditions at the melt/gas interface in the finite element formulation of the model. 
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The Grashof number appearing in (4) is defined using the temperature scale Tmp (see Table I.) 
The value of Gr defined in this way does not provide a useful measure of the driving force for 
natural convection; in fact, Gr will be a constant dependent only on the thermophysical properties 
of the melt and thus is insensitive to the operating conditions. A better basis for comparison with 
other studies of convection in idealized models is obtained by defining Gr* as 

A Tm Gr*rGr- -  
T ’  
I m p  

where AT, is the maximum temperature difference in the melt, i.e. 

AT,=max T-min T=max T- Tmp, 
0, Dm Dm 

(9) 

where D, denotes the melt. Because of the interrelationship between heat transfer in all of the 
phases, AT, is not known a priori. Instead, Gr* is computed after solving the HTCM. Unless there 
is undercooling, the minimum temperature in the melt will be Tmp at the melt/crystal interface; the 
maximum temperature will occur along the inner sidewall of the crucible linear where heat enters 
the melt. 

2.2. Boundary conditions 

An outstanding feature of the TCM is that it incorporates the free boundaries inherent to the 
CZ system with the heat transfer calculation. The shapes of the melt/solid interface, melt/gas 
interface and crystal are determined simultaneously with the temperature field throughout the 
system. The HTCM adds the effects of dynamic pressure and viscous stress on the shape of the 
meltJgas interface. The fluid flow interacts only indirectly with the shape of the melt/crystal 
interface and crystal radius insofar as the convection affects the temperature field. 

At the melt/crystal interface (do,) latent heat is generated as a result of solidification as the 
crystal is pulled upwards. The energy balance along this interface is 

n,.(K,V T- K,V T)=  Pe,Sn,.e,, (10) 

where no is the unit normal vector to the melt/solid interface and S is the Stefan number. The 
product Pe,S is a measure of the relative importancee of latent heat generation due to 
solidification and conductive heat transfer. Again, since the temperature is scaled with Tmp, the 
definition of the Stefan number S depends on material properties and not on the operating 
conditions. An idealization embedded in (10) is that the growth rate of the crystal is identical with 
the pull rate, an assumption which is valid only if the melt height is constant. A ‘batch correction’ 
based on a simple mass balance to account for this effect is given in Reference 30 and is included in 
the model discussed in Reference 29. 

Thermal boundary conditions are applied at the exposed surfaces of the system which describe 
both radiative and convective contributions to the heat flux. The radiative transfer is written for an 
idealized situation in which each surface views a specified ambient temperature. This temperature 
boundary condition is 

K,n,*V T= Bij( T- Ta(r, z ) )  + Rdj(T4 - T:(r, z ) ) ,  ( 1 1 )  

where i and j are used to denote the particular domains and surfaces respectively and Bij and Rd, 
are the Biot and radiation numbers which scale the heat transfer at the surface due to convective 
cooling by the gas and radiative energy loss, respectively. A more realistic calculation of radiative 



460 P. A. SACKINGER, R. A. BROWN AND J. J. DERBY 

heat transfer between the surface elements and the ambient for the TCM is described in 
Reference 14 and its implementation in the HTCM is detailed in Reference 29. 

For all surfaces except the outer crucible wall, Ta(r, z) is set to a lower temperature than the 
system so that cooling occurs from these surfaces. For the outer wall (aD,), Ta(r, z )  is set to the 
temperature of the heater, TH. This representation is valid for describing a crucible heated 
radiatively by a separate resistive element as depicted in Figure 1 for silicon growth, but is an 
idealization for inductive heating systems commonly used for oxide growth. An analysis of the 
inductive heating of a CZ crucible is described in Reference 31 and its incorporation into the 
HTCM is presented in Reference 29. 

The kinetics of solidification are assumed to be sufficiently fast so that the melt/solid phase 
boundary is at the equilibrium melting point. Then 

T(r ,  Z ) I z = H o ( r ) = l  (1 2)  

is the isotherm condition in the dimensionless form. 

difference caused by surface tension. In dimensionless form this equation is 
At the melt/gas interface the normal component of stress is set to balance the capillary pressure 

2 2 = Bo (H , ( r )  + A) - Wen , n :IS, (13) 

where 2 2  is the mean curvature of the interface, given in terms of H , ( r )  as 

where H ;  = d H Jdr, and n, is the unit normal to the meniscus. The hydrodynamic contribution to 
the normal stress balance is multiplied by the Weber number We. Examining the individual terms 
that comprise the normal stress shows that the pressure term in (7) is multiplied by We, the ratio of 
inertial forces to surface tension, and the dimensionless deviatoric stress term (Vv + VvT), is 
multiplied by the capillary number Ca= WePr, the ratio of normal viscous forces to surface 
tension. 

The bond number Bo, defined in Table I, is present in the conduction-dominated TCM and 
scales the effect of gravity on the shape of the meniscus. The reference pressure difference A also 
appears in the basic TCM and serves as a Lagrange multiplier, determined from the constraint of a 
constant volume melt. Within the framework of the QSS assumption the dimensionless melt 
volume V,, is 

= i o ( r ) r  dr + 1; HI (r)r  dr, 2n 

where R is the crystal radius. The constant V,  is chosen to correspond to a particular stage of the 
crystal growth process. 

The dimensionless crystal radius R that appears in (14) is also an unknown. The corresponding 
boundary condition associated with R is an equilibrium growth angle 4o which determines the 
slope of the meniscus at the growth tri-junction (see Figure 1): 

dH.1 =-cot4, .  
dr r = R  

(15) 

Similarly, at r = 1, a wetting angle is specified where the melt/gas interface meets the crucible 
wall. We assume that the melt does not wet the crucible (& = 90°) so the derivative of H ,  vanishes: 
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At the growth tri-junction the interface shapes Ho(r) and H,(r) meet, i.e. 

HO ( R  1 = HI (R) .  (17) 
Boundary conditions on temperature and velocity at the centreline (r = 0) follow from the 

assumed axial symmetry of the solution: 

and 

0, = us = 0, r=O. (19) 
While the temperature is continuous from the melt into the adjoining liner and crucible, the field 

equations for velocity apply only in the melt, and boundary conditions for v must be specified on 
the surfaces all,, all, and aD6 denoted in Figure 1. 

At the melt/crystal interface (all,) the velocity field must satisfy the no-slip boundary condition: 

v, = v,= 0, vs = Re, Pr  r,  (20) 
where Re, is a Reynolds number for rotational motion of the crystal, defined using L as a length 
scale. A second rotational Reynolds number for the crystal is defined using the crystal radius, 
which, generally is unknown a priori: 

R 
, L  Re:=Re =-. (21) 

Note that, consistent with the QSS assumption, the normal component of velocity at aDo due to 
solidfication is ignored. Including the solidification rate poses a dilemma for a QSS model. Since 
the melt volume contains an incompressible fluid, any mass leaving the system must be 
compensated for by an equivalent influx of mass, as is the case for continuous melt replenishment. 
A fully dynamical HTCM would account for mass leaving the system due to solidification by a 
decrease in the height of the melt/crystal and melt/gas interfaces. This velocity will typically be 
several orders of magnitude smaller than other characteristic fluid velocities in the system due to 
buoyancy, rotation, e t ~ . ~ '  

The no-slip boundary condition is imposed where the melt meets the crucible linear (do,) as 

v, = v, = 0, 

vs = Re, Pr  r, 

(22) 

(23) 

where Re, is a Reynolds number for the rotational motion of the crucible. 

normal component of velocity is simply 
No fluid crosses the melt/gas interface (all,), and at  steady state the boundary condition on the 

van, =O.  (24) 
Boundary conditions on the tangential stress are applied at  a D ,  and are written in terms of two 

tangent vectors (es, t l )  on this surface (see Figure 1). From the assumption of axial symmetry the 
azimuthal component of the tangential stress balance is trivial: 

eonl  :u = 0, (25) 
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while the component in the meridional direction (tl ) includes tangential stress generated by 
surface tension gradients: 

1 ar 
J(l  -t H;2)  F’ t,n,:a= -MaPr 

where the Marangoni number M a  is defined in Table I. 

2.3. Radius control 

The QSS model formulated above treats the crystal radius as an unknown which is determined 
as part of the solution to the field equations and boundary conditions. The crystal radius is 
sensitive to the operating environment and to the relative importance of convective heat transfer. 
The desire to grow crystals with constant radius has led to the extensive development of 
algorithms for automatic control during the batchwise growth process. 

The model presented here is modified to analyse growth at a constant crystal radius by a 
method first put forth in Reference 32. In particular, the radius is set to the desired value and an 
augmented equation is used to find the heater temperature consistent with the given crystal radius 
R = R,,,. The corresponding augmented equation is 

0 = R - R,,,, (27) 
where the heater temperature TH becomes the additional unknown and appears in the flux 
boundary condition for the outside surface of the crucible (do,), where q ( r ,  z )  in (1 1) is replaced 
by T H ,  

2.4. Analysis of tri-junction singularity 

The junction of the melt, crystal and ambient leads to discontinuities in the boundary 
conditions for momentum transport and to a sharp corner in the flow domain. These differences 
may lead to singularities in the flow field and possibly to non-integrable forces along the solid 
boundaries, as has been documented for moving contact lines.25 In this section we present a simple 
analysis to determine the form of the flow field near the melt/crystal/gas tri-junction for several 
combinations of boundary conditions along the melt/crystal and melt/gas interfaces. The analysis 
described here is taken from the more general treatment of singularities in Stokes flows presented 
by Moffatt” and the earlier work of Dean and Montagnon.26 

We assume that the character of the flow near the tri-junction is recovered by analysis of a small 
inertialess region sufficiently close to the corner that the melt/crystal and melt/gas interfaces are 
approximately planar and are unaffected by the flow. These are good approximations when the 
thermal Peclet number is small in this region and when We<< 1, as it is for semicondutor and oxide 
melts. This geometry is shown in Figure 2 along with the cylindrical polar co-ordinates ( p ,  9) used 
to represent the flow near the singularity. 

Following M ~ f f a t t ~ ~  we take the streamfunction as 

Y ( P , 9 ) = P A f A @ ) .  (28) 
The constant R is the eigenvalue with smallest real part determined from the problem formed by 
inserting equation (28) into the momentum equation written in the local polar co-ordinate system 
and imposing the no-penetration condition and either the no-slip or shear-free condition on the 
two segments of the boundary. Because 1 is generally complex, we write R=R, + iR,, where (A,, A i )  
are real and i = J- 1. 
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Figure 2. Schematic showing the melt/crystal/ambient tri-junction for the CZ system and the local polar co-ordinate 
system (P ,  9) 

The definition of the stream function, the equation of motion and the form of the stress tensor 
indicate that the pressure P and the components of the deviatoric stress t scale as p"' as the 
singularity is approached ( p  -0). Therefore the components of the stress are singular whenever 
A, <2  (except for the trivial case of A, = 1). Physically, the components of the stress should be 
square integrable, i.e. uije L2(D,). The separable form of (28) gives a direct interpretation between 
the real part of the Moffatt exponent and the square integrability of the stress oij .  Along a ray 
9 = So this requires 

which is satisfied only if 2, > 1.5 or A, = 1. The condition that the components o f t  and the pressure 
are separately in L2(D,) is also necessary for the solvability of the weak form of the momentum 
and continuity equations used in the finite element formulation. This formulation requires P and 
the gradients of v to be in L2(D,).33 These conditions are met if aijeL2(Dm). 

The real part of the most dominant eigenvalue (A,) determined from this analysis is plotted in 
Figure 3 as a function of the separation angle +T at the tri-junction for two sets of boundary 
conditions. This separation angle depends on the slope of the melt/solid interface at the tri- 
junction and on the equilibrium growth angle 4o as 

(bT= 4o + 90" -tan-' ~ (d21,=l)- 
The combination of no-slip/shear-free (ns/sf) is appropriate for modelling conventional CZ 
growth. Note that the components of the stress become singular at dT z 128", where A,= 2. The 
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0 

Figure 3. Results of asymptotic analysis for 1, as a function of separation angle &for ns/sf and nsjns boundary conditions. 
Dotted curves indicate li # O  

singularity becomes more severe with increasing +T, but remains integrable until +T = 180" 
(2, = 1.5), reaching the limit for square integrable stresses and pressure. This analysis suggests that 
a flat meniscus as used in the bulk flow models for CZ growth gives the strongest singularity and is 
the most difficult in which to reproduce accurate local approximations to the solution. Also, the 
small wetting angles (& - 10"-20") which are characteristic of real melt/crystal/gas tri-junctions 
do not lead to singular stresses at all. 

Forcing the velocity field to satisfy a no-slip condition (ns/ns) at the melt/gas interface makes 
the singularity less severe. As is well known, the stress is not singular at the corner unless the angle 
is re-entrant, i.e. 180". For lower values of the separation angle, the dominant eigenvalue has 
an non-zero imaginary part, indicating the presence of an infinite sequence of viscous eddies in the 
corner near the tri-junction. The amplitude of these eddies is strongly damped as p-0, since 
I ,  > 2-5 for both the ns/ns and the ns/sf cases when +T is in this regime. This sequence of eddies will 
exist in CZ systems when the crystal radius is decreasing as a function of time, i.e. where the 
effective growth angle measured from the vertical is less than zero, or if the melt/crystal interface is 
highly deflected near the tri-junction. 

3. NUMERICAL METHOD 

The non-linear coupling caused by the interactions of the interface shapes with energy and 
momentum transport make it extremely important that the algorithms for numerical solution of 
this problem explicitly account for the unknown interface shapes. The finite element approxima- 
tions presented in Section 3.1 accomplish this. The Newton iteration scheme presented in 
Section 3.2 is a robust technique for simultaneous solution of the coupled set of algebraic 
equations. 

3.1. Finite element analysis 

The problem defined by (1H27) is reduced to a set of residual equations by approximating the 
velocity field, temperature field and interface shapes by expansions expressed in terms of finite 
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element basis functions and unknown coefficients. A mesh is formed of quadrilateral elements 
which span the domains corresponding to the melt (D,,,), crystal (Ds), crucible (D,) and liner (Q). 
Each interface (a l l i )  is defined by one-dimensional edges of the quadrilateral elements, so that the 
shape of the mesh is coupled to the solution of the field equations through the definition of the 
basis function. Sample meshes are shown in Figures 4 and 5. Finer discretizations are used near 
the boundaries of the melt to resolve the boundary layers in temperature and velocity which are 
expected there. 

The field equations and boundary conditions are discretized using a mixed finite element basis 
set and Galerkin's method. The temperature field in all phases and the velocity in the melt are 
approximated by nine-node Lagrangian biquadratic polynomials {Qi(r, z )  } as 

N 
T(r, z )  = 1 Fi)Oi(r, z), 

i =  1 

(a) (b) (C) 

Figure 4. Finite element meshes used in convergence studies of the HTCM for Si; mesh (total number of unknowns) (a) M3 
(6647), (b) M4 (13999), (c) M5 (28 287) 
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(a) (b) (C) 

Figure 5. Finite element meshes used in convergence studies of the HTCM for GGG, mesh (total number of unknowns) 
(a) N1 (12042) (b) N2 (20928), (c) N3 (44079) 

where N ,  Is the number of nodes in the melt and N is the total number of nodes in all phases. The 
isoparametric mapping consistent with the Lagrangian biquadratic basis is used to transform each 
element in the cylindrical co-ordinate system (r, z )  to the co-ordinate system (t, 9 )  where the 
element is square (- 1 I5 I 1, - 1 I q I 1). These two co-ordinate systems are related by 

9 9 

where the global co-ordinates of each node are (r i ,  z i )  and the biquadratic Lagrangian basis 
functions defined in terms of (5 ,  q )  are {4i(t, q ) )  . 3 3  

The dynamic pressure in the melt is approximated by linear basis functions {I,P) relative to the 
centroid node of each element in the transformed co-ordinate system. The pressure is represented 
as 

NP 

P(r ,  z)= C f'Wi(t(r, z), r(r, z)) ,  (34) 
i =  1 



CZOCHRALSKI CRYSTAL GROWTH 467 

where N ,  is the total number of pressure unknowns in the melt. The three linear basis functions 
($['I} within each fluid element are 

11/"](5, a) = 1% $[2'(5> a) = 5, $'31(5, a) = a, 
where the superscript [ i ]  denotes a local numbering index; the mapping (33) transforms between 
the co-ordinate systems. This approximation to the pressure field is discontinuous between 
elements and yields an exact mass balance over each element. 

The shapes of the melt/crystal interface and the melt meniscus are approximated by one- 
dimensional, three-node quadratic Lagrangian polynomials { Ti(r)} which are consistent with the 
biquadratic interpolants and the isoparametric mapping used for the temperature and velocity 
fields. The ith interface shape is expressed as 

N. 

where Ni is the number of nodes which fall along the ith interface. 
The field equations are transformed into weak form by Galerkin's method. We implement the 

heat flux boundary conditions at the solidification interface, (lo), and at the external boundaries, 
( 1  l), as natural conditions in the weak form. The residual equations associated with the energy 
balances become 

KjV@.VTdV- Pe,cD'(aT/dz)dV- @'v-VTdV+IaD0 Pe,S(B'(n,*e,)dS 
- s, s, 6., 

cD'[Bi,(T- T, )+Rdk(T4-  T:)] dS=O, (36) 
- 1.. 

where i = 1, . . . , N represents the residual equation for each node, j =  m, s, c, 1 represents each of 
the mesh regions and k =  1, . . . , 5 denotes the bounding external surfaces. Nine-point Gaussian 
quadrature is used to calculate all area integrals and three-point quadrature for all line integrals. 

The isotherm condition for the temperature at the melt/crystal interface, (12), is formulated as a 
residual equation for determining the location of this interface: 

loR I-'[ T (Y, If,&)) - I] rdr = 0. (37) 

This technique is known as the isotherm method.lg 
The Galerkin method is applied to the stress-divergence form of the momentum, (4), and 

continuity, (6), equations to yield residual equations for the velocity and pressure fields in the melt: 

[VQ, ':ct - Q, 'v:Vv -(@ '-ez) GrPr2( T- 1) J d V+ Q, 'n:a dS = 0, (38) 
$aDm 

where i = l ,  . . . , N ,  represents the residual equation for each node in the melt and {ai> 
represents the velocity basis functions of(31) multiplied by the three unit vectors (er, e,, e,) for each 
component of the velocity field. In this notation (38) has a total of N ,  = 3N, residual equations 
which describe the velocity in the melt. The continuity equation is discretized using Galerkin's 
method to yield 

jDm 'PJV-v d V=O, 

where j=1, . . . , N , .  

(39) 
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At the centreline of the melt equations (1 8) are applied as natural boundary conditions for v, and 
T, and equations (19) are enforced as essential boundary conditions on u, and ug along the 
melt/crystal interface and the bottom and sides of the crucible. No-slip conditions (20H23) are 
applied as essential boundary conditions. Since the melt meniscus is a free surface, one boundary 
condition must be distinguished for determining its location while the remaining three are used as 
boundary conditions for the three components of the momentum equation. The azimuthal 
component of surface stress, (25), is applied as a natural condition for uo. The remaining tangential 
stress balance (26) and the kinematic condition (24) are applied as boundary conditions for u, and 
u2, respectively. The tangential stress balance (26) is included as a weak boundary condition. No 
normal flow through the meltlcrystal and meniscus surfaces is enforced by the residual equations I., @'v.n,dS=O, 

lD, @'v.n, dS = 0, 

which replace the z-component of the momentum equation along the interface. 
It is crucial for self-consistent conservation of mass that the integral formulation of the no- 

penetration condition is used on both curved boundaries. Calculations based on the integral 
formulation (41) along the meniscus, but setting v, = u, = 0 as essential boundary conditions on the 
meltlcrystal interface in place of (40) (including the node at the tri-junction), resulted in poor 
conservation of mass in the element under the meniscus next to the tri-junction. The failure to 
obey mass conservation is closely allied with the loss of the hydrostatic pressure mode that must 
exist for incompressible In this case the error in mass conservation from the small element 
adjoining the tri-junction was severe enough to drive weak, secondary vortices in this region. 
These vortices are not seen when the weak form (40) is used. 

As in the conduction-dominated TCM, the normal stress condition at the meniscus is used as 
the distinguished condition for this interface. The weak form of this equation is 

+I- ' [Bo(H,  +A)-  Wen,n,:a] 

with the boundary conditions (17) and (18) applied. For We=O this result is identical to the 
discretized form of the Young-Laplace equation of capillary statics used by Derby et al." 

The volume constraint (14) and the wetting angle condition (15) complete the set of residual 
equations for the reference pressure difference A and the crystal radius R respectively. The volume 
constraint is formulated by writing the interface shape functions H,(r )  and H , ( r )  in terms of their 
one-dimensional Lagrangian basis functions and using three-point Gaussian quadrature to 
evaluate the integrals along the element boundaries on aD, and aD,. 

3.2. NewtonlRaphson method 

The set of non-linear residual equations which describes this problem is formed by the 
combination of equations (14), (15) and (36H42). The non-linearities are provided by the 
temperature-dependent thermal conductivity, the radiation boundary flux conditions for 
the energy equations, the convective transport terms in the momentum and energy equations, the 
mean curvature in the normal force balance across the meniscus and, most pervasively, the 
dependence of all the residuals on the interface shapes through the implicit dependence of the finite 
element basis functions and the Galerkin integrals on the domain shape. The performance of any 
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numerical algorithm for such a complex free boundary problem depends strongly on the method 
employed to solve this non-linear equation set. 

We have extended the Newton/Raphson method applied for the conduction-dominated TCM 
to include the velocity and pressure unknowns in the melt. We summarize the technique here; 
more detail is available in Reference 35. 

The set of residual equations (36)-(42) is represented by the vector equation 

R(x; p) = 0. (43) 
The vector of unknowns is x=(T, v,, vz, v,, P, R ,  H,, HI ,  A), where the unknown field variables 
are represented by vectors of their nodal values. The vector p represents the parameters in the 
equation set. As discussed in Section 2.3, in the calculations performed here the heater temperature 
TH is included as an unknown in the simulation by adding equation (27). Then TH is removed from 
p and added to x. 

The Newton/Raphson iteration scheme is used to solve simultaneously for all unknowns. Given 
an initial guess for the solution X('), successive iterations are computed as 

(44) X(k+ 1) - - x (W +tYk), 

where k denotes the iteration number and the correction vector tY" is calculated by solving the 
linear equation set 

J(x(k))&(k) = - R(x(k). 3 P) (45) 
where J, = 8Ri /8xj ,  is the Jacobian matrix representing the sensitivity of the residual equation set 
with respect to the unknowns. All contributions to the Jacobian matrix are computed in closed 
form. The procedure described in Reference 35 is used to account for the dependence of the basis 
functions on the locations of the nodes ( r i ,  zi} and hence on the shape of the interfaces. 

The linear equation set (45) is solved by Gaussian elimination using a modified frontal solver 
based on the one originally put forth by Hood.36 Buffering and asynchronous 1/0 are 
implemented to maximize computational efficiency on Cray X-MP computers at Lawrence 
Livermore Laboratory and Pittsburgh Supercomputing Center. 

Including the unknowns due to the interfaces in the simultaneous solution algorithm is 
particularly efficient and robust. Typically, between three and six Newton iterations are required 
to converge to a solution, depending on the values of the parameters and the initial guess used in 
(44)-(45). In addition, Newton's method lends itself to computer-implemented perturbation 
methods for determining the temporal stability of the solution, to continuation methods for 
generating accurate initial guesses and for traversing folds in the parameter space37 and to the 
formulation of fully implicit transient integration methods.35 

4. RESULTS FOR SILICON GROWTH 

The thermophysical properties and system parameters used in the simulation of silicon crystal 
growth are given in Tables I1 and 111. For the calculations presented here, the radius of the crucible 
is R,,,,= 7.3025 cm and the crystal radius set point in (27) is R,,,=05 R,,,,. All of the parameter 
values in the simulations presented here were set at those listed in these tables, except that the 
possiblity of surface-tension-driven flows was ignored (dy/d T= 0) and the coefficient of thermal 
expansion was used as a parameter to vary the intensity of the buoyancy-driven floas from 
pm=O K-', corresponding to the conduction-dominated model, to the value pm= 1.4 x K - ' ,  
appropriate for Si. The crystal radius is held fixed for all the calculations reported here by using the 
extra equation (27) to determine the appropriate heater temperature TH. The more effective heat 
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Table 11. Thermophysical data used for HTCM simulations of silicon and GGG growth systems 

Quantity 
Silicon GGG 

Symbol (units) D, DS Dc D, D m  Ds D c  

Heat capacity Cp(Jg-'K-') 1 ,o 2.3 1.6 2.2 0.586 0586 1.0 
Thermal conductivity k (W cm-' K-I )  0.64 0.22 0.60 0.06 005 0.20 1-5 
Density P(gcm-3) 2.42 2.3 1.6 2.2 5.7 7.2 22.4 
Emissivity 41) 0.3 0.7 0.8 0.35 0.3 0.3 0.5 

Quantity Symbol (units) Silicon GGG 

Thermal diffusivity in melt a, (cm's-') 0.26 0.01 5 
Thermal diffusivity in crystal a, (cm's-') 0.096 0947 
Viscosity An (cp) 0.7 40. 
Kinematic viscosity v, (cm2 s-')  2.9x 10-3 7.0 x lo-' 
Coefficient of thermal expansion 8, K') 0-1 x 10-4 0-2.7 10- 5 

Heat of fusion AH, (Jg-') 1800. 455.4 
Melting point temperature Tmp (K) 1683 2023 
Equilibrium growth angle 40 11 17 
Surface tension y (dynecm-') 742.6 700.0 
Thermocapillary coefficient dy/dT (dyne cm-' K-I )  0 0 

Table 111. Operating parameters for HTCM simulations for silicon and GGG 

Quantity 

Crucible radius 
Melt volume 
Pull rate 
Heater temperature 
Crystal rotation rate 
Crucible rotation rate 
Ambient temperature 
Set point radius 
External convective heat 

transfer coefficient 

Symbol (units) 
~~~ 

Silicon GGG 

7.3025 
973 
5.0 

1902t 
0 
0 

1430 
0.5 

0.00 1 

9.8425 
953 
0.1 

2412'1 
0 
0 

1800 
0.5 

0.00 1 

* Note that heater temperature and crystal radius are coupled through the control equation. 
t Computed ex postfacto for the case &,=2 x K-'  ( G r * = 7 x  lo6, Re*=2100) for mesh M5. 

Computed ex postfacto for the case B, = 2.7 x 10- K -  (Gr* = 1.8 x lo6, Re* = 840) for mesh N3. 

transport by convection will cause TH to decrease with increasing p,,,. Then the effective Grashof 
number Gr* will vary because of both b,,, and AT,,,. 

Computations were performed for the three different meshes shown in Figure 4. The coarsest 
mesh, M3, is identical to the finest mesh used for the conduction-dominated TCM by Derby.I5 
This mesh consisted of 16 radial elements and eight axial elements in the melt plus a thin special 
graded region containing four elements in the radial direction just outside the growth tri-junction. 
This region is included so that the highly curved melt/ambient surface is accurately represented. 
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The mesh M3 was more than adequate to represent the temperature field for the TCM but was 
generally insufficient to resolve the velocity field for intense flows. Consequently two finer meshes 
were constructed. The intermediate mesh, M4, was designed from M3 by adding extra elements in 
the graded regions on the boundaries. This was done to help capture the boundary layer structure 
in the velocity field for intense convection. The finest mesh, M5, was constructed from M4 by 
increasing the number of elements in the bulk regions of the melt to 32r x 162 but retaining the 
same discretization near the boundaries. The detailed picture of the melt region of mesh M5 given 
in Figure 6 depicts the special layers and shows the deformation of the elements required to map 
the interface shapes. 

The calculations presented here focus only on buoyancy-driven flows as a demonstration of the 
accuracy of the calculations. Results for combinations of the possible driving forces will be 
presented elsewhere. 

4.1. Increasing buoyancy-driven convection 

The evolution of the flow pattern in the melt for increasing Grashof number is demonstrated in 
Figures 7 and 8 by results with the finest mesh M5 for increasing p,. Streamline and temperature 

Figure 6. Detailed view of the finite element mesh M5 in the melt region 
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Figure 7. Streamlines, temperature and interface shapes for increasing buoyant convection, HTCM Si simulation. 
Isotherm spacing 10 K, dotted contours every 100 K. Streamline contours are equally spaced from ((lminr to 0 and from 0 to 
$,,, the location and magnitude of the extrema are indicated on each plot and thezero contour is denoted by dotted lines. 
(a) f l , = O K - ' ,  Gr*=O, Re*=O, Pe*=O, TH=1937.5K. (b) & , = 1 ~ 1 0 - ~ K - '  , Gr*=4,6x lo', Re*=14, Pe*=0.15, 
T I I  - - 1937.2 K .  (c) &,=S x K - ' ,  

Gr* = 1.6 x lo8, Re* = 1.0 x lo4, Pe* = 110, T,= 1857.4 K 
K - ' ,  Gr*= 1.5 x lo', Re*=3.1 x lo3, Pe*=34, T H =  18935 K .  (d) b,= 1 x 

contours are shown in Figure 7, and radial and axial components of velocity are shown in Figure 8 
along with the pressure field. Since there is no driving force for rotational flow, i.e. Re,=Re,=O, 
the azimuthal velocity is zero in all cases. The temperature field for pure conduction (p,=O K - ' )  
is shown for reference in Figure 7(a). Heat enters non-uniformly along the wall of the crucible and 
conducts through the melt into the crystal and the crucible bottom. Heat is lost from the crystal, 
crucible and melt surfaces by radiation and conduction according to (1 1). The radial temperature 
gradients in the melt lead to buoyancy-driven flows for any non-zero value of B,. Several flow 
regimes are apparent as p, is increased. These regimes represent changes in the dominant forces in 
the momentum balance, the formation of boundary layers and the growing importance of 
convective heat transport. 

K - ' ,  the structure of the 
flow is controlled by a balance of viscous and buoyant forces. Under these conditions the 
Reynolds number Re* E V*RJv, based on the characteristic velocity of the melt, V*, is small; 
Re* < 10 approximately. Then the Peclet number for convective heat transport, Pe* = Re*Pr, is 

For very low values of the thermal expansion coefficient, fi,< 
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J 2.7x_Lo-2 I I 

Figure 8. Contours of v,, u,, and Efor increasing j,, HTCM Si simulation. Velocity contours are equally spaced from the 
minimum to zero and from zero to the maximum, with the location and magnitude of the extrema indicated on each plot 
and the zero contour denoted by dotted lines. Pressure contours are equally space between Pmin and P,,, Radial velocity 
contours for (a) j,= 1 x K1. Axial velocity contours for (d) @,= 1 
x K - I ,  (e) j ,=5 x K - I ,  (f) j , = l  x K - I .  Pressure contours for (g) j,= 1 x K - I ,  (h) j,=5 

x K - I ,  (i) a,,,= 1 x K - '  

K - I ,  (b) j,=5 x K1, (c) @,= 1 x 

also small (for silicon Pr=0.01) so that the temperature field stays very near the conduction- 
dominated limit. 

Increasing p,, and hence Gr*, rapidly forces inertia to become important in the flow and leads 
to the formation of an inviscid core flow which is connected to the solid surfaces by viscous 
boundary layers; the flow in Figures 7(b) and 8(a, d, g) for /?, = 1 x lo-' K -  '(Gr* = 5 x lo3) is an 
example of this type of flow. The formation of the boundary layer on the vertical sidewall is very 
evident in the axial velocity component 0,; the boundary layer along the bottom of the crucible is 
clear in the contours of u,. The inviscid motion in the core of the vortex produces pressure contours 
which follow Bernoulli's equation, i.e. P O C ~ V ~ ~ ;  see Figure 8(h). 

The boundary layers separate from the crucible bottom and sidewall as 8, is increased. The 
resulting steady state flows with small separated eddies, as shown in Figure7(c) for 
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p,= 5 x K-'  (Gr* = 1.5 x lo'), are probably unstable to oscillatory disturbances which lead 
to time-periodic solutions like the ones computed by Crochet et aLZ4 and Bottaro and Zebib.38 
Thermal boundary layers have not yet formed in the melt; Pe* = 34 for /3, = 5 x 

that is appropriate for silicon39 leads to thermal 
boundary layers along the crucible bottom and sidewall and to a nearly isothermal core region in 
the melt. Then the melt motion is fastest in a boundary layer adjacent to the sidewall and this layer 
separates from the sidewall and circulates around the melt cavity. A sample flow pattern is shown 
in Figure 7(d) for calculations with b,= 1 x K- '  (Gr* = 1-6 x 10'). Under these conditions 
the melt in the centre of the crucible moves very slowly clockwise and the pressure field is 
approximately hydrostatic there. The weak counter-rotating core flow is driven by the inverted 
radial temperature gradient in this region and opposed by shear forces acting from the boundary 
layers. A similar concentric counter-rotating core flow is evident in the bulk flow simulations of 
Langlois and Lee.39 

The evolution of the heater temperature TH and the effective Reynolds number Re* 
with increasing buoyant convection as measured by Gr* are plotted in Figure 9. For values of 

K- ' .  
Increasing p, towards the value 1.4 x 

d 
Slope = 1 ' 

, ' 0  
I '  A 
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Figure 9. Reynolds number Re* as a function of Gr*, and the heater temperature T,(K),  required to maintain the 
constant crystal radius, as a function of Pe* 
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Gr* > 1 x lo6, Re* grows as Gr* and TH decreases as Gr*'", as predicted by the analysis of a 
buoyant boundary layer on a vertical surface of fixed temperat~re.~' 

The complex flow structure, including extremely fine boundary layers, makes even the 
computation in fixed domains of CZ bulk flow difficult. The calculations shown in Figures 7 and 8 
demonstrate these features. Moreover, the wiggles in the velocity contours near the bottom and 
sidewall boundary layers for B,= 1 x K - l  (Figure 8(c, f)) show that even the finest mesh is 
beginning to have difficult approximating the This difficulty is not surprising considering 
that Re* = O(104). 

The robustness of the simultaneous Newton iteration for the field variables and interface shapes 
is evident in Figure 10 by the convergence with the number of Newton iterations for calculations 
with increasing p,. Initial guesses for each calculation were provided either by using the 
converged solution at the closest lower value of B,, or by extrapolating with a polynomial fit of 
two or more previous converged solutions. In each calculation the iterations converged 
quadratically after one or two initial iterations. 

1 o3 

1 o2 

10' 

1 o' 

lo-' 
N - - 

'0 - - 
i 
0 
u 4 

Iteration number, n 

Figure 10. Convergence of Newton iteration scheme for different values of fim 
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4.2. Flow near the tri-junction 

The predictions of the asymptotic analysis for the structure of the velocity field near the tri- 
junction are tested by plotting the form of the velocity components u,(R, z) and u,(R, z) as the tri- 
junction is approached upward along a ray at a constant value of the radial co-ordinate, r = R .  
Along this vertical line, the radial and vertical velocity components (u,, u,) measured in the global 
cylindrical co-ordinate system are identical with the azimuthal and radial velocity components 
(ug, u p )  measured in the local polar co-ordinate system originating at the tri-junction; see Figure 2. 
The results for calculations with four meshes with equally spaced elements in the melt and with 
b, = 1 x K -  ' are shown in Figure 1 l(a) for @o = 45" with ns/ns boundary conditions and in 
Figure l l(b) for @o=900, a flat meniscus, for ns/sf boundary conditions. Recalling that the 
exponent for the local tri-junction velocity components is 1- 1, we extract the finite element 
prediction for 1, from a logarithmic plot of Jug1 as a function of p, the distance to the tri-junction. 
The leading-order power law behaviour predicted by the form (28) is evident in both results. The 
exponents predicted by the calculations also agree with the asymptotic values. For &, = 45", 
Acalc = 2.74 and 1, = 2.63 and for & = 90", Acalc = 1.50 and Ar = 1.5. 

4.3. Assessment of accuracy 

We have assessed the accuracy of the finite element algorithm by comparing claculations at 
j,= 5 x lop6 K-'(Gr*= 1.5 x 10') for the three meshes shown in Figure 4. Contours of the two 
velocity components, the streamfunction, temperature and pressure are shown separately. The 
qualitative features of the temperature field and the streamfunction shown in Figures 12 and 13 are 
similar for each mesh and provide a flattering but incomplete indication of the accuracy of the 
calculation. The size, intensity and location of the separated eddies vary significantly with mesh 
refinement, indicating that meshes M3 and M4 are too coarse to capture these aspects of the flow. 

The inadequate resolution of meshes M3 and M4 is evident in the contours of velocity shown in 
Figures 14 and 15. Only the finest mesh M5 gives velocity fields free of oscillations. Because the 
flow field is relatively inviscid away from the solid boundaries, the inaccuracies in the velocity field 
are mimicked by the pressure (Figure 16) through Bernoulli's equation. 

A quantitative comparison of results for the three meshes is given in Table IV. Each of the 
measures of the solution converge with increasing mesh refinement, i.e. the difference between the 
results for meshes M3 and M4 is greater than the difference between the calculations for meshes 
M4 and M5. The convergence of these results is not a trivial test for calculations. Because the 
Grashof number is high enough for the formation of viscous boundary layers, the calculation of 
the flow field is extremely difficult. Much more impressive convergence results can be tabulated for 
the viscous-dominated flows for Gr* < lo5, but the results are less meaningful for the prediction of 
real flow phenomena in CZ growth. 

We have found that examining contours of the divergence of the velocity field (V-v) is an 
effective means for detecting the local breakdown of the accuracy of the calculations as well as for 
diagnosing improper formulation of the discretized equations for mass conservation on the 
boundary alluded to in Section 3.1. This is demonstrated in Figure 17 by plots of ( V v )  for 
calculations with meshes M3, M4 and M5 and the value of j?, used in Figure 4. Because (V-v) is 
calculated by simply differentiating the Lagrangian biquadratic basis functions for v, the contours 
are discontinuous across element boundaries. 

For the coarse mesh M3 in Figure 17(a) the pointwise error in (V-v) is distributed throughout 
the Row and reaches extreme values of 17. Because the zero contour is present in each element and 
the positive and negative pointwise deviations are such that the imposed Galerkin integral 
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Figure 1 1 .  Velocity and pressure field in the vicinity of the tri-junction, plotted along the vertical line at r =  R.  Following 
this ray to the tri-junction, p = H , ( R , z ) - z ,  up=u,, u g = v ,  
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r - 4  

q I 

(4 (b) (C) 

Figure 12. Temperature contours for HTCM Si simulation for p,=2 x K - ' ,  G r * = 7 x  lo6, Re*=2100. Isotherm 
spacing 10 K, dotted contours every 100 K. Meshes: (a) M3, (b) M4, (c) M5 

y,,, = 3.68 x 10-4, ymx = 1.02 x lo': ym* = 5.47 x 1e 
\ 

Figure 13. Stream function contours for HTCM Si simulation for p,=2 x K - ' ,  Gr* = 7  x lo6, Re* =2100. Contour 
values evenly spaced between $,,,in (M5) and zero and between zero and +,,,ax (M5); zero contour denoted by a dotted line. 

Extrema are indicated for each plot. Meshes: (a) M3, (b) M4, (c) M5 
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V, m.. 1.31 v,mx 11.19 

I I 
(a) v, I -1.08 (b) v,m,,=-1.04 (C) v,,=-1.09 

Figure 14. Radial velocity contours for HTCM Si simulation for 8, = 2 x K -  ', Gr* = 7 x lo6, Re* = 2100. Contour 
values evenly spaced between urmin (M5) and zero and between zero and u,,,, (M5); zero contour denoted by a dotted line. 

Extrema are indicated for each plot. Meshes: (a) M3, (b) M4, (c) M5 

Vz ml., = 1.29 

\ \ 
VZrnl" I 4 9 7 5  Vzml" E -1.01 \ 

vz mln = 4.975 

Figure 15. Axial velocity contours for HTCM Si simulation for p,=2 x K ' ,  Gr*=7 x lo6, Re*=2100. Contour 
values evenly spaced between uZmi,(M5) and zero and between zero and u,,,,(M5); zero contour denoted by a dotted line. 

Extrema are indicated for each plot. Meshes: (a) M3, (b) M4, (c) M5 

P, z 0.213 P, I 0.264 P, 10.290 

fa) P, I -1.61 (b) P, = -l.Y P,,,,, I -1.49 

Figure 16. Pressure contours for HTCM Si simulation for 8,=2 x K - ' ,  Gr* =7 x lo6, Re* =2100. Contour values 
evenly spaced between Pmin(M5) and P,,,(M5). Extrema are indicated for each plot. Meshes: (a) M3, (b) M4, (c) M5 
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Table IV. Measures of overall solution obtained for three different meshes for Si growth 

Description Variable M3 M4 M5 

No. of radial elements in melt N E m r  20 28 44 

No. of pressure unknowns in melt NP 
Total no. of unknowns N t o t  

No. of axial elements in melt N E m z  8 17 25 
No. of velocity unknowns in melt Nv 209 1 5985 13617 

480 1428 3300 
6647 13999 28287 

CPU sec/Newton iteration 20 50 170 
~~ 

Streamfunction minimum 
Streamfunction maximum 
Temperature difference across 
melt domain 
Heater temperature 
Melt/crystal interface deflection 
Grashof no. 
Reynolds no. 
Range of pressure 

-017600 
5.468 x 

00427 8 8 

1.1 272 13 

6-574 x lo6 
2170 
1.8106 

- 0.02075 

- 0.1 7530 

0.044 147 

1.1 29649 
- 0.03009 

6.782 x lo6 
21 10 
1.7421 

3.684 x 
- 0.1735 1 

1.025 x 
0.044633 

1.130362 
-0.03176 

6.857 x lo6 
2150 
1.7547 

C, = 16.8 

residual equation is satisfied, it is both sufficient and more illuminating to plot only the contours of 
one sign. There is some focusing of the error in the highly deformed isoparametric elements under 
the tri-junction. The error is greater in the boundary layers, and especially in regions of separated 
flow, as seen in Figure 17(c) for mesh M5. This indicates a deterioration in the quality of the 
velocity field which is also seen in the contour maps for u, and 0,. 

5. RESULTS FOR GGG GROWTH 

The system parameters and thermophysical properties used in the calculations for GGG are given 
in Tables I1 and 111. The dimensions of the system match the experimental CZ apparatus of the 
LLNL Laser Program with a crucible radius of 4 inches and a crucible height of 8 inches. 
Simulations for increasing p,,, were carried out to examine the effect of increasing the intensity of 
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buoyancy-driven convection in the melt. As discussed previously, this approach allows for the 
independent variation of the Grashof number in the model. The calculations presented in the 
following sections do not include rotation of the crystal or crucible, nor is thermocapillarity 
considered. Results for combinations of driving forces will be considered in another paper. As in 
the results for Si, the crystal radius is set to RC,,,/2 and the heater temperature TH, consistent with 
the fixed radius, is calculated as part of the solution. 

The high Prandtl number ( P r x 4 . 7 )  of molten GGG and the range of Grashof numbers 
considered here (Gr* x lo3 - lo6) virtually assure the development of boundary layers in the 
temperature and velocity field as the intensity of flow increases. Accordingly, finite element meshes 
were carefully designed to adequately capture this behaviour, with fine elements near the 
boundaries of the flow domain. As for the meshes used in the silicon calculations, additional 
elements were also included to resolve the shape of the highly curved meniscus and the details of 
the flow field near the sharp corner formed by the melt/crystal interface and the melt meniscus. 
The three meshes Nl-N3 used in the calculations are shown in Figure 5. Mesh N2, with a total of 
28 419 unknowns, was used for all of the results presented in Section 5.1. The accuracy of these 
meshes is addressed in Section 5.2. 

5.1. lncreasing buoyancy-driven convection 

The temperature and flow fields for calculations of increasing /?, and Gr* are shown in 
Figures 18 and 19. The temperature field and interface shapes for a hypothetical system with no 
convection (/?,=O K -l, Gr* =0) are shown for reference in Figure 18(a). Although this tempera- 
ture field is similar to the result for silicon shown in Figure 7(a), there are several important 
quantitative differences. First, the melt/crystal interface is appreciably more concave. This is 
caused by the larger radial temperature gradients in the crystal due to the enhanced radiative heat 
loss at the higher temperature. Secondly, the axial temperature gradient in the crystal is lower than 
that in the melt because the conductivity of the crystal is three times higher. This situation is 
opposite to that in silicon growth. 

The larger Prandtl number of GGG, P r x 4 . 7 ,  causes the temperature field to distort 
continuously with increasing /?, and Gr*, compared to the silicon case with low Prandtl number 
( ~ 0 0 1 )  where the temperature field mimics the conduction limit until high values of the Grashof 
number (Gr* > lo6). As the flow intensifies, convection becomes increasingly important for heat 
transfer through the melt, and the results in Figures 18(c) and 18(d) for /?,=2*7 x K - '  
(Gr* = 3.6 x lo4) and /?,=2-7 x K- '  (Gr* = 1.8 x lo6) show the temperature field tracking 
the streamlines. The melt/crystal interface deflects downward along the centreline as fluid is swept 
across it by the buoyant recirculation. An indication of the increase of heat transfer from the hot 
crucible wall to the crystal is evidenced by the decrease in heater temperature needed to maintain 
the desired crystal radius as /?, increases. This effect is documented in Figure 9(b), where the heater 
temperature T, is plotted as a function of the Peclet number for heat transfer in the melt, Pe*. The 
data for the GGG calculations are shown as solid circles. 

As the intensity of convection increases, the streamlines along the bottom of the vortex begin to 
undulate (see Figures 18(c) and 18(d)). This pattern evolves since the bottom of the crucible loses 
heat to the pedestal, and a vertical temperature gradient with colder fluid on the bottom results. 
The corresponding vertical density profile is stabilizing. Warm fluid in the recirculation which 
plunges down the centreline of the crucible is retarded by this stabilizing density gradient, 
producing a stationary pattern which is similar to the formation of lee waves in a stratified 
The effects of this density stratification are more pronounced for B=2*7 x K - ' ( G r * =  
1.8 x lo6), where a secondary vortex near the lower centreline of the flow domain in nested within 



482 P. A. SACKINGER, R. A. BROWN AND J. J. DERBY 

AT = 120K 

Figure 18. Streamlines, temperature and interface shapes for increasing buoyant convection, HTCM GGG simu- 
lation. Isotherm and streamline spacing denoted on plots. (a) P,=O K - ' ,  Gr*=O, Re*=O, Pe*=O, TH=4831 K .  
(b) pm=2.7x 1 0 - 9 K - '  Gr*=9.6x loz, Re*=6.1, Pe*=28, TH=3926 K .  (c) Pm=2.7x lO-'K-', Gr*=3fix lo4, 
Re*=97, Pe*=4.5x I d z ,  TH=2782 K.  (d) Bm=2.7x l O - ' K ' ,  Gr*=1.8x lo6, Re*=8.4x lo2, Pe*=3.9x lo3, 

TH=2412K 

the primary circulation and a separate, counter-rotating vortex has developed along the crucible 
bottom. Unlike the appearance of separated flow along the crucible sidewall for Si growth, the 
formation of recirculation on the crucible bottom probably does not signal a transition to time- 
periodic flows. In fact, axisymmetric flows qualitatively similar to these were found to be steady 
by Muller et ~ 1 . ~ ~  in experiments using water (Pr  = 7). The final calculation in Figure 18(d) for 
bm=2.7 x K - '  represents the estimated experimental value of the thermal expansion co- 
efficient for GGG.44 

Contours of radial velocity, axial velocity and pressure are shown as a function of increasing p, 
and Gr* in Figure 19. The velocity contours clearly show the evolution from a simple toroidal roll 
cell for pm= 2.7 x (Gr* =960) to the complicated, multiple-cell flow structure for b= 2.7 
x K-'(Gr* = 1.8 x lo6). Small aphysical wiggles are present in the velocity field for the most 
highly convected flow field (Figure 19(c)); these wiggles signal the breakdown of the Galerkin 
formulation for this discretization and will be discussed further in the following section. The 
pressure field for each calculation is predominantly hydrostatic, caused by the interaction of the 
Boussinesq term in the momentum equation (4) with the large vertical temperature gradient in the 
melt. The pressure field near the corners of the flow domain reflects the turning nature of the flow; 
these effects are crowded closer to the boundaries as the flow intensifies. 
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Figure 19. Contours of u,, u,, and P for increasing p,, HTCM GGG simulation. Velocities are in units of cm s- ’; 
pressure is in units of dyne crn-’. Zero contours marked by*. (a) 8,=2.7 x 
A ~ , = 2 5  x AP=6.48 x (b) 8,=2.7 x lo-’  K-’, Gr* =3.6 x lo4, Au,= 1.7 x LO-’, Au,=3.3 x lo-’, 

K - ’ ,  Gr*=9.6 x lo2, Au,= 1.5 x 

AP=0.23. (c)pm=2.7x K - ’ ,  Gr*=l%x lo6, Au,=0.16, Au,=0.3, AP=10.8 

Momentum and temperature boundary layers begin forming on the crucible sidewall at 
relatively low values of /?, and Gr*. Profiles of the temperature and axial velocity near the crucible 
sidewall are shown in Figure20 for several values of Gr*. In Figures 2qa) and 2qb) the 
temperature and velocity at z x 048, an axial position nearly midway between the crucible bottom 
and the melt surface, are plotted as functions of the distance from the crucible wall. Boundary 
layers which decrease in thickness with increasing Grashof number are apparent in both 
components. The temperature difference between the wall and the bulk decreases as Gr* increases; 
this effect is caused by the corresponding decrease in heater temperature as convection increases, 
as discussed above (see Figure 9(b)). The opposite trend is seen for the axial velocity, which 
increases with the Grashof number. The temperature and velocity are plotted in terms of scaled 
quantities in Figures20(c) and 2qd). In both figures the distance from the wall is plotted in 
stretched co-ordinates by the appropriate scaling for free convection along a vertical heated 
plate4’ or for flow in a rectangular cavity.46 As shown in the figures, for Gr* > lo4 the boundary 
layer thickness of both temperature and velocity scales with [Gr*Pr]  ‘I4. However, the magnitude 
of the axial velocity in the boundary layer does not scale as well with the factor [Gr*Pr]-”2 
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Figure 20. Temperature and axial velocity profiles plotted with increasing distance from crucible wall at zx0.48 

predicted in Reference 46. This lack of agreement may be caused by the impact of the stratified 
density regime on the flow at higher values of Gr*. 

The effective Reynolds number Re* is shown as a function of the Grashof number Gr* for the 
GGG calculations by the solid circles in Figure 9(a). For values of Gr* > lo4 the effective Reynolds 
number increases with Gr* For the Gr* = 1.8 x lo6 calculation shown in Figure 18(d), the 
structure of the primary flow approaches the boundary layer regime discussed by where the 
streamfunction and temperature are functions only of axial position in the core, i.e. yj N $(z) and 

The behaviour of the local velocity and pressure field near the tri-junction is examined in 
Figure 21, where the components of the finite element solution are plotted along a vertical ray 
emanating from the tri-junction. The data for this plot were taken from the calculation for 8, =2.7 
x (Gr* = 1.8 x lo6) with the finest mesh N3 (see Figure 5(c)). For this simulation the growth 
angle for GGG was taken to be 17" and the melt/crystal interface was inclined ~ 2 3 . 5 "  upward 
from the horizontal, yielding a total angle of &= 1305". The Moffatt exponent is calculated to be 
,I= 1.97 for this angle, and the velocity components should scale as up, u ~ - r ' - '  ~ r l .  The log-log 
plot 21(b) shows that up does indeed follow the leading-order behaviour Fredicted by Moffatt's 
analysisz7; however, the other component of velocity, us, deviates slightly from the predicted 
scaling. 

T- T (z). 
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Figure 21. Velocity field in the vicinity of the tri-junction, plotted along the vertical line at r = R .  Following this ray to the 
tri-junction, p = H , ( R ,  z)-z, up=u,, v ~ = u ,  

5.2. Assessment of accuracy 

The three meshes shown in Figure 5 were used to examine the accuracy of the results for the 
high-Prandtl-number calculations. Calculations were performed for 8, = 2.7 x 10- for each 
mesh, and contours of the solutions are shown in Figures 22-26. The convergence of the results 
toward the flow structure shown for the finest mesh is apparent, as is the under-resolution of the 
thermal boundary layers and components of the velocity field by the coarsest mesh in 
Figures 22(a), 24(a) and 25(a). 

Quantitative predictions of the value of Gr*, the deflection of the melt/crystal interface between 
the centreline and the crystal edge, the temperature difference across the melt and the maximum 
pressure difference in the system are listed in Table V for the three meshes. Each of these values 
converges with mesh refinement. The interface deflection appears to be the most inaccurate of the 
values tabulated, but the difference IAHol is small relative to the maximum deflection that occurs 
along the middle of the crystal. The shape of the melt/crystal interface depends on the local 
temperature field, which is expected to be more sensitive to any approximation errors in the 
velocity field for the high-Prandtl-number oxide melt than for the low-Prandtl-number silicon 
melt, where conduction heat transport is more dominant. Other values have changed by less than 
1% between the two finest meshes N2 and N3. 

A measure of the mass conservation by the finite element method for these supposedly 
divergence-free incompressible flows is shown in Figure 27 by plotting contours of the discrete 
value of (V*v) for the solutions given by meshes N1, N2 and N3. In each figure, contours of + 0.1 
and -01  are plotted; the maximum values of ( V v )  are 0 (10) for each calculation. Pointwise mass 
conservation improves as the discretization is increased, as is indicated by the larger portions of 
the flow domain where no contours appear. In addition, the poorest resolution of divergence-free 
flow by the finite element solutions is seen to occur near discontinuities in the boundary 
conditions, i.e. in the corners and near the tri-junction, and in areas where the flow structure is 
complex, i.e. near the bottom centreline of the domain. 
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Figure 22. Temperature contours for HTCM GGG simulation for 8,=2.7 x lo-’ K -  ’ (Gr*= 1.8 x lo6). The isotherms 
are spaced at 20 K, the contour for 2000 K is marked by*. Meshes: (a) N1, (b) N2, (c) N3 

6. DISCUSSION 

The Galerkin finite element approximation of the velocity, pressure and temperature fields 
combined with Newton’s method for simultaneous iteration for the interface shapes and field 
variables is a robust method for solution of the steady state, hydrodynamic thermal-capillary 
model (HTCM) of CZ growth. With fine finite element discretizations, accurate solutions are 
obtained with realistic values of the thermophysical properties using only a few (four to six) 
Newton iterations. 

Complex flow structures are predicted for realistic values of the thermophysical parameters for 
both semiconductor and oxide materials. For the low-Prandtl-number system (Si) the evolution 
from a viscous-dominated flow to the development of momentum boundary layers with a highly 
advective core region and finally to thermal boundary layers is observed. Flow separation occurs 
along the sidewall of the crucible at moderate values of the Grashof number. For idealized models 
of Czochralski bulk flow, time-dependent calculations9~ 3 8  and computer-implemented tracking of 
Hopf bifurcation points47 have confirmed that time-periodic, axisymmetric motions start after the 
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Figure 23. Streamfunction contours for HTCM GGG simulation for fin= 2 7  x 
spacing is 4 x 

K -  ' (Gr* = 1.8 x lo6). The contour 
for $ >O; the contour for $ =O is marked by*. Meshes: (a) N1, (b) N2, (c) N3 for $ <O and 2 x 

appearance of flow separation. Even the steady state, separated flows are extremely difficult to 
compute. Our examination of the accuracy of the calculations with mesh refinement for Gr* w 7 
x lo6 shows that accurate prediction of the separated flow requires high resolution of the flow 

near the solid boundaries and a fine finite element mesh. The meshes used in this study are more 
resolved than those used in the time-dependent calculations and are comparable to those used in 
Reference 47 for detection of Hopf bifurcation points. Moreover, Winters et al. 47 demonstrate 
that inaccurate resolution of the flow overestimates the value of Gr* for the onset of time-periodic 
motion, as is expected because of the extra viscous dissipation implied by the inadequate 
representation of thin boundary layers on a coarse mesh. 

Flow structure for the high-Prandtl-number system (GGG) evolves in a markedly different 
manner than for the low-Prandtl-number semiconductor system. For even moderate Grashof 
numbers (Gr* = O( lo4)), boundary layer structure is clearly evident in the temperature field of the 
melt. The temperature and velocity field near the crucible wall scale according to boundary layer 
flow along a heated vertical surface. Unlike the semiconductor melt, separation of the sidewall 
boundary layer does not occur as the flow intensifies, but a secondary vortex and an additional 
counter-rotating vortex form at the bottom of the crucible near the centreline at Gr* = 2  x lo6. 
There is some evidence that the axisymmetric flows calculated for this realistic value of the 
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Figure 24. Radial velocity contours for HTCM GGG simulation for j, = 2.7 x 10. K - '  (Gr* = 1.8 x 10')). The contour 
spacing is 0.2 cms I ;  the contour for 0 crns-l is marked by*. Meshes: (a) NI, (h) N2, (c) N3 

Grashof number are stable, as shown by the experimental results of Muller et and the bulk 
flow calculations of Lang10is.~~ The cooling of the bottom of the crucible in these simulations has 
a stabilizing effect on the flow; calculations in Reference 29 address the effect of changing the heat 
transfer from the crucible bottom. 

Including the other driving forces for convection, crucible and crystal rotation and surface- 
tension-driven motions will make the flow structure even more complicated. Internal shear layers 
will form because of competition between flows driven by several sourus; the evolution of such 
flows will be addressed in another paper. Accurate approximation of internal layers require highly 
resolved calculations in the interior of the flow domain as well as near the boundaries of the melt 
domain. Meshes at least as fine as those used here are needed to resolve these layers, especially if 
the onset of time-dependent flows is to be predicted accurately. 

The agreement between the finite element predictions for the velocity field near the melt/crystal/ 
ambient tri-junction and the asymptotic analysis which is valid in the limit of Ca+O is evidence 
that the behaviour of the flow near this singularity is not destroying the accuracy of the finite 
element method elsewhere. Interestingly, the flow near the tri-junction is more easily approxi- 
mated for the realistic growth angles 4,, used in this analysis, which are appropriate for crystal 
growth systems, than for the value 4o =90" used before in the idealized bulk flow calculations. The 
pressure and stress are not as singular for small values of 4o as they are for the flat meniscus case. 
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Figure 25. Axial velocity contours for HTCM GGG simulation for p,=2.7 x K - '  (Gr*= 1.8 x lo6). The contour 
spacing is 0.4 cms-'; the contour for Ocms-' is marked by*. Meshes: (a) N1, (b) N2, (c) N3 

Table V. Measures of overall solution obtained for three different meshes for GGG growth 

Description 
~ ~ 

Variable N1 N2 N3 

No. of radial elements in melt 
No. of axial elements in melt 
No. of velocity unknowns in melt 
No. of pressure unknowns in melt 
Total no. of unknowns 
CPU secmewton iteration 

Streamfunction minimum 
Streamfunction maximum 
Temperature difference across 

Heater temperature 
Melt/crystal interface deflection 
Grashof no. 
Reynolds no. 
Range of pressure 

melt domain 

23 
23 

6627 
1587 
12042 

40 

~ ~ 

38 47 
35 45 

16401 25935 
3990 6345 
28419 44079 

190 360 

-4.359 x 10-2 
8.532 x 

0.17852 

1.1985 

1.852 x lo6 
853.8 
277.0 

- 0.0 1404 

-4.354 x 10-2 
8.154 x 

0.17522 

1.1923 

1.817 x lo6 
842.4 
265.3 

- 000607 

-4.358 x lo-' 
8.143 x 

0.17434 

1.1907 

1.808 x lo6 
839.2 
263.5 

- 0.0038 1 
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Figure 26. Pressure contours for HTCM GGG simulation for p, = 2.7 x 10- K-  I (Gr* = 1.8 x lo6). The contour spacing 
is 13.96 dynecm-'; the contour for 0 dyne cm-' is marked by*. Meshes: (a) N1, (b) N2, (c) N3 

Figure 27. Contours for discrete values for (V-v)= kO.1 for HTCM GGG simulation for (I,=2.7 x K-' (Gr* = 1.8 
x lo6). Meshes: (a) N1, (b) N2, (c) N3 
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